Soft Tissue Kit Protocol

Overview Figure 1:  Live/dead image of human neonatal dermal fibroblasts encapsulated in bioprinted Gelatin/Fibrin Processed Gelatin/Fibrin Soft Tissue Kit contains all the materials needed to print with this gelatin-based hydrogel, which solidifies through enzymatic crosslinking with a thrombin, calcium chloride, and transglutaminase solution. The recommended preparation provided in the user instruction below yields a streamlined matrix bioink that Read More

Processed Gelatin/Fibrin Bioprinted Viability

Introduction Matrix bioinks, or cell-encapsulating bioinks, are arguably the most important reagents used in the bioprinting processes. These materials must shield cells from shear stresses during the printing process, closely mimic the extracellular matrix and offer quick, nontoxic gelation for optimal print resolution. Types of matrix bioinks range from simple cell slurries suspended in media Read More

Collagen and FRESH printing

Overview Figure 1:  Live/dead image of human neonatal dermal fibroblasts encapsulated in LifeInk200 (collagen) after 1 day of culture. LifeInk200 is a high concentration collagen bioink that can be thermally crosslinked at temperatures above 10ºC. Due to its concentration, it has impressive shape fidelity during bioprinting. However, since LifeInk200 cannot support itself before crosslinking, we Read More

Printing with GelMA: Troubleshooting

Below are some common issues users have when printing with GelMA and potential troubleshooting steps. For more details on this material, check out some background information, our protocol or our bioreport. Issue 1: My GelMA solution seems to have a low viscosity, or quickly dispenses out of my syringe. Troubleshooting tip 1: Try placing your syringe on ice Read More

BioBots Reagent Guide

Want some guidance on what BioBots reagents to use with your BioBot 1 bioprinter? Check out the information below to learn more about available reagents to purchase for use with your BioBot 1. Each of these reagents has a bioreport (our testing results) and protocol for suggested use with the BioBot 1 bioprinter. Many in Read More

Bioprinted Alginate Viability

Introduction As a naturally occurring polysaccharide commonly derived from algae or seaweed, sodium alginate’s abundance and low cost make it a popular biomaterial for cellular encapsulation and bioprinting (1). Sodium alginate forms a hydrogel through a sodium-calcium ion exchange. As this crosslinking process occurs very quickly, sodium alginate can be difficult to bioprint on its own. Many studies combine Read More